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11.

12.

Differential equations

Differential Equation: An equation involving derivatives of the dependent variable with
respect to independent variable (variables) is known as a differential equation.

. Linear and non-linear differential equation: A differential equation is said to be linear if

unknown function (dependent variable) as its derivative which occurs in the equation,
occur only in the first degree, and are not multiplied together. Otherwise, the
differential equation is said to be non-linear.

Order: Order of a differential equation is the order of the highest order derivative
occurring in the differential equation.

Degree: Degree of a differential equation is defined if it is a polynomial equation in its
derivatives.

Degree (when defined) of a differential equation is the highest power (positive integer
only) of the highest order derivative in it.

Solution: A function which satisfies the given differential equation is called its solution.

General Solution: The solution which contains as many arbitrary constants as the order
of the differential equation is called a general solution.

Particular Solution: The solution free from arbitrary constants is called particular
solution.

To form a differential equation from a given function we differentiate the function
successively as many times as the number of arbitrary constants in the given function
and then eliminate the arbitrary constants.

Variable Separable method: Variable separable method is used to solve such an
equation in which variables can be separated completely i.e., terms containing y should
remain with dy and terms containing x should remain with dx.

A differential equation which can be expressed in the
form % f(x,y) or j—ig(x, y) where, f(x, y) and g (x, y) are homogenous functions of

degree zero is called a homogeneous differential equation.

: . . d
A differential equation of the form d—z + Py = Q, where P and Q are constants or
functions of x only is called a first order linear differential equation.
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Important Questions
Multiple Choice questions-

1. The degree of the differential equation:

d2y .. dy .. . .d .
y)"+(—y)"+5|n(1—y)+1:015

dz? dz dz

(

(a) 3

(b) 2

(c)1

(d) not defined.

2. The order of the differential equation:

2 d?y dy _ o

dz?

(a) 2
(b) 1
(c)0
(d) not defined.

3. The number of arbitrary constants in the general solution of a differential equation of fourth
order is:

(a) 0
(b) 2
(c)3
(d) 4.

4. The number of arbitrary constants in the particular solution of a differential equation of third
order is:

(a) 3

(b) 2
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(c)1
(d) 0.

5. Which of the following differential equations has y = c1 €* + c2 e* as the general solution?
(a) Z+y=0
(b) -y=0

()—+1 0

dx?
(d)= d—y— 1=0
6. Which of the following differential equations has y = x as one of its particular solutions?

dZ
(a) =2 — x2 y+xy X

dx? dx
(b)dz—y+xd—y+xy=x
dx? dx

d?y 5, dy
— — — + e
(c) 2 X Xy 0

(d) +xd—y+xy 0

7. The general solution of the differential equation % =e"is
(a)e*+eY=c

(b) e*+e¥=c

(c)e*+e¥=c

(d)e*+eY=c.

8. Which of the following differential equations cannot be solved, using variable separable
method?

(a) d_y + et 4 Xty
dx
(b) (y? — 2xy) dx = (x* — 2xy) dy

dy_
(c)xydx—1+x+y+xy
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9. A homogeneous differential equation of the form Z—z = h(g) can be solved by making the
substitution.

(a) y = vx

(b) v =yx

(c) x = vy

(d)x=v

10. Which of the following is a homogeneous differential equation?
(@) (4x + 6y + 5)dy — (3y + 2x + 4)dx =0

(b) xy dx — (x3 +y?)dy = Q

(c) (x®*+2y?) dx+2xydy=0

(d) y2 dx + (x2 = xy —y?)dy = 0.

Very Short Questions:

dZy dy 2 4
1. Find the order and the degree of the differential equation: x? — = [1 + (E) ] (Delhi

dx
2019)
. . . . dy\3 d?y
2. Determine the order and the degree of the differential equation: (E) + ZyE =0
(C.B.S.E. 2019 C)

3. Form the differential equation representing the family of curves: y = b (x + a), where « and
b are arbitrary constants. (C.B.S.E. 2019 C)

4. Write the general solution of differential equation:
Z—z = e*"¥ (C.B.S.E. Sample Paper 2019-20)
5. Find the integrating factor of the differential equation:

DY _ 9y = 3ey
Yoo 2x =y’e

6. Form the differential equation representing the family of curves y = a sin (3x — b), where a
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and b are arbitrary constants. (C.B.S.E. 2019C)

Short Questions:
1. Determine the order and the degree of the differential equation:

2. Form the differential equation representing the family of curves: y = e* (a + bx), where ‘@’
and ‘h’ are arbitrary constants. (Delhi 2019)

3. Solve the following differentia equation:
Z—Z +Yy = cos X - sin x (Outside Delhi 2019)
4. Solve the following differential equation:

% +x = (tan y + sec2y). (Outside Delhi 2019 C)

Long Questions:
1. Find the area enclosed by the circle:
x*+y?=2a% (N.C.ER.T.)

2. Using integration, find the area of the region in the first quadrant enclosed by the x-axis,
the line y = x and the circle x*> + y?> = 32. (C.B.S.E. 2018)

3. Find the area bounded by the curves y = Vx, 2y + 3 =Y and Y-axis. (C.B.S.E. Sample Paper
2018-19)

4. Find the area of region:

{(x,y): x* + y? < 8, x? < 2y}. (C.B.S.E. Sample Paper 2018-19)
Case Study Questions:

d
—y=py=Q,

1. If the equation is of the form dx where P, Q are functions of x, then the
solution of the differential equation is given by ye

= pdx ydx
yefpdx - f Q e/ P dx + ¢, where e/ P o ljed the integrating factor (I.F.).

Based on the above information, answer the following questions.
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I. The integrating factor of the differential equation

sinx% + 2y cosx = 1is (sinx)*, where A =

Qfam
WK

" d
Il. Integrating factor of the differential equation (1 — XE)E}T — XY = 1is:

a —Xx
gy X
Lix

c. /1 —x2
d. 1log(1 — x?)

lii. The solution of % +y = e, F(D) =4}, sz

ay=¢e*(x—1)
by=Xe *
Ey=xe>*41

dy=(x+1)e*

d
i + ytanx = sec X is:

Iv. General solution of
aysecy =tanx+c
b.ytanx =secx+c
ctanx=ytanx +c

dXsecx =tany+c
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d A
v. The integrating factor of differential equation E}r — 3}" — sIn 2X is:

dy  flx,y) dy __ F(2

L dx " ax Tt A\x )

2. If the equation is of the form g(x,y where f(x, y), g(x, y) are
homogeneous functions of the same degree in x and y, then put y = vx And

dy dv
&~ V(& )

so that the dependent variable y is changed to another variable v and
then apply variable separable method.

Based on the above information, answer the following questions.

. d
i. The general solution of x2 d_,y( = x2 + XYy + y2 is:
a tan ! 3 =loglx[+c
1y _
b.tan " = =log|x| +c

cy=xlogl|x|+c
dx=ylog|y| +¢

. d
ii. Solution of the differential equation 2xyay =x% 4+ 3y2 is:

a x> +y2=cx?

b Z 4% =yt

2 2

c.x2+vy3 =cx
d. x2 + y% = cx3
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iii. General solution of the differential equation (x% + 3xy + y2) dx - x2 dy = 0 is:

xt+y

a —- —logx=c
b.x—;y +logx=c
C'ﬁ —logx=c
d.ﬁ +logx=c

. d
Iv. General solution of the differential equation ay = %{ log (Z) -+ 1} is:

a log(xy) =c
b logy = cx
c log % = ex

d logx = cy

: . : . dy
V. Solution of the differential equation (XE - y)e

y .
a.ex —sInx==¢
l .
b.ex +sSsInx=¢C
e
X

cex —SInxXx=2=c¢

_y .
dex +sImx==c¢

Answer Key-

Multiple Choice questions-
1. Answer: (a) 3

2. Answer: (a) 2

3. Answer: (d) 4.
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4. Answer: (d) 0.

2
5. Answer: (b) %—y =0

2 dy

dZ
6. Answer: (c)—f—x —
dx dx

+xy=0
7. Answer: (a)e*+eY=c
8. Answer: (b) (y?— 2xy) dx = (x* — 2xy) dy

9. Answer: (c) x=vy

10.Answer: (d) y? dx + (x2 —xy — y?)dy = 0.

Very Short Answer:
1. Solution: Here, order = 2 and degree = 1.
2. Solution: Order = 2 and Degree = 1.
3. Solution:
We have: y=b(x + a) ...(1)

Diff. w.r.t. x, b.

Again diff. w.r.t. x,

dzy_o
xz

=
which is the reqd. differential equation.

4. Solution:

d
We have: =2 = e+
dx

= e dy = e* dx [Variables Separable
Integrating, [ e ¥dy + ¢ = [ e*dx
>-eV+c=¢
=>e'+e¥=c.

5. Solution:

The given equation can be written as.
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2
ﬂ{ — _.1' = }:Eg'}
dx y
-J Ed}.
IFE = ¢ 7

= o2loghi _ ghﬁ;li - ;1?

6. Solution:
We have:y—asin (3x—b) ...(1)
Diff. W.r.ty Z—z =acos (3x—b) .3
=3a cos (3x—b)

zy )
i -3asin (3x—b) 3
=-9asin (3x—Db)
= -9y [Using (1)]

2
%y +9y=0m

dx?

which in the reqd. differential equation.

Short Answer:

1. Solution: Order = 2 and Degree = 1.

2. Solution:

We have:y =e* (a + bx) ...(1)

Diff. w.r.t. x, Z—z =e* (b) + 2e2x (a + bx)

Again diff. w.r.t. x,

dZ
=2 = 2be + 2%
dx?
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@y o 4y _ dy
dxz_z(dx 2y)+dx
[Using (2)]
d’y _dy C . . .
Hence, =z -4 — + 4y =0, which is the reqd. differential equation.

3. Solution:

The given differential equation is:

d . . .
é +y = cos X — sin x dx Linear Equation

o LF. = el1% = ex
The solution is :
y.e*=[(cosx —sinx) e*dx+C
=>vy.e*=e*cosx+C
ory=cosx+Ce™

4. Solution:

The given differential equation is:

dx _ 2
- + X = (tany + sec?y).

Linear Equation

“ LLF. =Jldy = ey

=~ The solution is:

X.ey =[ey(tany +sec?y)dy +c
= Xx.ey=eytany+c

=x =tany+ce”, which is the reqd. solution.

Long Answer:

1. Solution:
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-1

d}' }II _IZ Iz

dx  2xy 2y
x
Put l =y
X
dy dv
= = d —_ = Al
¥ = vxand so o v+xdx
s dv v —1
V4+XxX — =
dx 2v
xdv (1+v*)
= —_—
dx 2v
dx 2vdv
=1 — e L
J x J’1+1u:‘1

log x = -log (1 +Vv?) +log C

x(1+v?)=C
x(l + i—j) =C
x>+y?=C
2. Solution:
dy  2x 1

—_— =
dr 1420 A+

ix

P -
IE = ¢ I+x* +£hﬂl+x}=(l+x2]'

1

1422

Solutionis y(1+x%) = [
=tanlx+C
Wheny=0,x=1,

thenO=%+C

C=
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.'.y(1+x2)=tan‘1x—%

3. Solution:

We have:y =ae™*>+5..(1)

Diff. w.r.t. x, 2 = aeb**5, (b)
dx

2 _dy .....(2) [Using (1)]]

Again diff. w.r.t x.,

2
29 _p% ...03)

dx? dx

dy dy

A’ _ dx

dy y

dx

d* dy
- 23

£y _(4)
= ""rd'.:c2 ~ \dx

which is the required differential equation.

1
o

4. Solution:

The given differential equation is:
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xdx-ye'V1+x* dy=0

dx
= —=—== - ye’ dy =0 [Variables Separable]
Vi+x

[ntcgrating,j x dx -jye-'"d}r=c A1)
'I+;:c2
Nuw.j z dx:lj{l+x2)'”2(2x}dr
1.|||1+_t2 2
142
_1(1_"'5.2_._“_ )
9 1z T e

And, Jy e”dy=y-e”—‘[{1)eydy

[Integrating by parts
=I}FE_'F_ E_"l"
s From(1), J]4+ 2 -(ve-€)=c

="\/1+x =c+e(y=1) 2]

Whenx=0,y=1,~1=c+c(0)=>c=1.
Putting in (2), V1 + x2=1+eY(y-1),
which is the reqd. particular solution.
Case Study Answers:
1. Answer :

I. () 2

Solution:

. _ _ . . dy
The given differential equation can be written as i . 2y cot X = cosec x
- ILF = ef2cotxdx — e2log|sinx| _ (SiIlX)z

SoA=2
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i (©) V1 — x2

Solution:

1
— eElog(l—x ) — elog(l—x2)2 =4+/1—-x
iii. () y = xe ™ *
Solution:

dy _
We have, —= +y=e*

It is a linear differential equation with LE. = efdx =X
Now, solutionis y - € = [e *dx + ¢

= ye* = [dx+c

=>ye*=x+c

=>y=Xxe *+ce ™

- y(0)=0=c=0

Ly = xe X
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iv.(a)ysecy =tanx+c
Solution:
dy .
We have, 3 +ytanx = secx

It is a linear differential equation with,

LF. = eftanxdx — elog|secx| _ goex
Now, solution is Yy S€C X = fsec2 xdx+c

= ysecx =tanx+c
V. (€) e 3
Solution:
dy ;
We have, 7—3y = sIn 2x
It is a linear differential equation with,
LF. = ef 3dx — ¢ 3x
2. Answer :
y
X

i (p)tan ! < =log|x|+c

Solution:

dy _ Z+xy+y’

We have, e 2
d
Put y = vx and ay = V—}—X%
. V+Xd—v - x2+x><\fx+v2x2 - 1+V+V2
dx x2

dv __ 2 dv. __ [ dx
= x=1+v' = H_‘:’?—IT—l—c
= tan v =log|x| +c

= tan ! I =log|x| +c
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3

ii. (d) x% + y2 = cx
Solution:

We have,

2xy% = x% + 3y?

dy  xX*+43y°
= d&x = 2xy
dy dv

Put y = vx and 3 V—}—X&

dv _ 243

VX G, 2vx?

e x% _ 14-2::,:2 o
R

= [Zrdv=[% +logc

= log |1 + v?| = log |x| + log |c|
= log [v? + 1| = log |xc|
:»V2+1=xc=>xr—;+1=xc

= x2+y2 =x3c
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jii. (d) ——

x+y +logx=c

Solution:

We have,
(x2+3xy+y2)dx-x2dy=0

X2+ 3xy+y? dy
T 2 Tk

dy
Put y= vx and a = V+X3;

X433V dv
2 st

X

= 1+43v+v2 =vxd

dx
dv
= 14 2v + v =X
= [& - [(vHl) 2=dv=c
logx + v” = g

= logx + == i
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iv. (c) log % —F-

Solution:
Sy 1 1
We have, & og +
dy
Put y = vx and E — V—{—Xg;

" v—l—x%v = v{log(v + 1}

d
= xgq- =vlogv

= [ -2 Tlog v —fdx = log | log v| = log |x| + log |c|

= log (%) = X

y -
v.(a)ex —sinx==c

Solution:

dy £ .9
We have, Xa—y €x =—m X" COSX

dy -4
= (E = ;)ex = X COSX

_ dy _ dv
Put y = vx and I —V—I—de

(v-l—x— — v)e = XCOSX

= xe"gx—v — XCOSX

=>fe"dv=fcosxdx
= e"=sinx+c¢

y -
= €x —SInX=2=¢



